Glycogen synthase sensitivity to insulin and glucose-6-phosphate is mediated by both NH2- and COOH-terminal phosphorylation sites.

نویسندگان

  • A V Skurat
  • A D Dietrich
  • P J Roach
چکیده

In skeletal muscle, insulin activates glycogen synthase by reducing phosphorylation at both NH2- and COOH-terminal sites of the enzyme and by elevating the levels of glucose-6-phosphate, an allosteric activator of glycogen synthase. To study the mechanism of regulation of glycogen synthase by insulin and glucose-6-phosphate, we generated stable Rat-1 fibroblast clones expressing rabbit muscle glycogen synthase with Ser-->Ala substitutions at key phosphorylation sites. We found that 1) elimination of the phosphorylation of either NH2- or COOH-terminal sites did not abolish insulin stimulation of glycogen synthase; 2) mutations at both Ser-7 and Ser-640 were necessary to bypass insulin activation; 3) mutation at Ser-7, coupled with the disruption of the motif for recognition by glycogen synthase kinase-3 (GSK-3), did not eliminate the insulin effect; and 4) mutation of either Ser-7 or Ser-640 increased the sensitivity of glycogen synthase to glucose 6-phosphate >10-fold. We conclude that Ser-7 and Ser-640 are both involved in mediating the response of glycogen synthase to insulin and activation by glucose 6-phosphate. In Rat-1 fibroblasts, GSK-3 action is not essential for glycogen synthase activation by insulin, and GSK-3-independent mechanisms also operate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes.

In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mechanism involved in human muscle and the defect in type 2 diabetes remain unclear. We studied the effec...

متن کامل

Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a).

Rabbit skeletal muscle glycogen synthase, a rate-limiting enzyme for glycogen biosynthesis, is regulated by multisite phosphorylation. The protein kinase glycogen synthase kinase 3 (GSK-3) phosphorylates 4 Ser residues (Ser-640, Ser-644, Ser-648, and Ser-652; also known as sites 3a, 3b, 3c, and 4, respectively) at the COOH terminus of the subunit. Phosphorylation of these sites by GSK-3 is sequ...

متن کامل

Structural Studies on Rabbit Muscle Glycogen Synthase

Limited tryptic digestion of either synthase I or D forms resulted in the appearance of a new glucose 6-phosphate-dependent form which was composed of 75,000 molecular weight subunits. Early in tryptic digestion, an intermediate 78,000 subunit was also observed with both forms of the enzyme. The NH,terminal dipeptide sequence of the 75,000 subunit of both forms was the same as that of the origi...

متن کامل

Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH₂-terminal (sites 2 + 2a) phosphorylation.

Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. Previously, we demonstrated that phosphorylation of Thr³⁰⁸ on Akt (p-Akt-Thr³⁰⁸), Akt2 activity, and GS activity in muscle were positively associated with insulin sensitivity. He...

متن کامل

Glycogen synthase kinases. Classification of a rabbit liver casein and glycogen synthase kinase (casein kinase-1) as a distinct enzyme.

A protein kinase, able to phosphorylate casein, phosvitin, and glycogen synthase, was purified approximately 9000-fold from rabbit liver, and appeared analogous to an enzyme studied by Itarte and Huang (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057). This enzyme, designated here casein kinase-1, was shown to be a distinct glycogen synthase kinase and in particular to be diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 49 7  شماره 

صفحات  -

تاریخ انتشار 2000